
Convex Optimization for problems in
Quantum Information Theory

Undergraduate Thesis

Submitted in partial fulfillment of the requirements of

BITS F421T Thesis

By

Aryaman Jeendgar

ID No. 2019B5AA0767H

Under the supervision of:

Dr. Riley Murray

&

Dr. Sarmistha Banik

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, HYDERABAD

CAMPUS

December 2023

http://www.bits-pilani.ac.in/
http://www.bits-pilani.ac.in/

Declaration of Authorship

I, Aryaman Jeendgar, declare that this Undergraduate Thesis titled, ‘Convex Optimization for

problems in Quantum Information Theory’ and the work presented in it are my own. I confirm

that:

■ This work was done wholly or mainly while in candidature for a research degree at this

University.

■ Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

■ Where I have consulted the published work of others, this is always clearly attributed.

■ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Certificate

This is to certify that the thesis entitled, “Convex Optimization for problems in Quantum

Information Theory” and submitted by Aryaman Jeendgar ID No. 2019B5AA0767H in partial

fulfillment of the requirements of BITS F421T Thesis embodies the work done by him under my

supervision.

Supervisor

Dr. Riley Murray

Senior Member of Technical Staff,

Sandia National Laboratories

Date:

Co-Supervisor

Dr. Sarmistha Banik

Professor,

BITS-Pilani Hyderabad Campus

Date:

ii

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, HYDERABAD CAMPUS

Abstract

Master of Science(Hons.) Physics

Convex Optimization for problems in Quantum Information Theory

by Aryaman Jeendgar

Convex optimization is an important tool in Quantum Information (QI). CVXPY is used in

QI-focused Python packages like: QuTiP, qiskit-optimization, Rigetti’s Grove, and Sandia

National Labs’ pyGSTi [17, 21]. The goal of this thesis began from working towards the inclusion

and implementation of various functions and constraints highly relevant for applications in QI

such as von Neumann entropy, quantum relative entropy, and the operator relative entropy

cone. The scope of this work eventually proliferated to working on other aspects such as the

implementation of a high-level module for verifying the KKT conditions (briefly discussed in

this thesis). In summary, the core contribution of the work done as a part of this thesis is the

implementation of semidefinite representations of the above-stated functions described in [11]

within the CVXPY modeling platform.

http://www.bits-pilani.ac.in/
https://github.com/qutip/qutip
https://github.com/Qiskit/qiskit-optimization
https://github.com/rigetti/grove
https://github.com/pyGSTio/pyGSTi

Acknowledgements

This thesis summarizes a great deal of the work that I have done towards extending CVXPY

over my almost (at the time of this writing) year and a half association with the CVXPY group

and the community at large. None of it would’ve been possible in its current form without the

constant support and input from my advisor, Dr. Riley Murray. From working on the FiniteSet

PR when I first touched base with the CVXPY codebase to now extending the work we began

back during GSoC-22, I am deeply grateful to Dr. Riley for always being around, as an advisor,

mentor and friend.

At the same time I would be amissed to not thank the rest of the members of the CVXPY group

including (but not limited to), Steven Diamond, Philipp Schiele and Akshay Agrawal for all of

their mentorship and help throughout this time (and to more beyond)!

I would also like to thank My Co-Supervisor, Prof. Sarmistha Banik. From being an instructor

beyond par in the courses I took under her to introducing me to the exciting world of Neutron

Star physics, which we worked on for two-semesters straight to also being an exceptional mentor.

I am truly grateful to have been associated with Prof. Banik during my stay at BITS. Speaking

of which I’d like to thank the entire Physics department at BITS Hyderabad for giving me a

cutting-edge education in the physical sciences, much of which will be indispensable as I slowly

progress towards becoming an independent researcher. Thank you!

Back home, I’d like to thank my parents, my younger brother and my closest friends for being

my anchor in the most challenging of times (of which, there were many :)).

iv

Contents

Declaration of Authorship i

Certificate ii

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

Abbreviations/Notations viii

1 A Generic introduction to Convex & Conic Optimization 1

1.1 Whetting the appetite, basic . 1

1.1.1 What is mathematical optimization? . 1

1.1.2 Optimization software . 2

1.2 Some fundamental theory, intermediate . 3

1.2.1 Basic definitions . 3

1.2.2 A toy problem using the QRE . 5

1.3 On Conic Optimization, Advanced . 5

1.3.1 Convex cones and the Conic reformulation 5

1.3.2 Conic duality . 6

1.3.3 Optimality for Conic Problems . 7

2 Dual variables for the n-dimensional power cone in CVXPY 9

2.1 What is the Power Cone? . 9

2.2 The dual of the Power Cone . 9

2.3 A simpler representation of the N -dimensional power cone 10

2.4 Dual variables corresponding to this representation 10

2.5 Implementing all of the above within CVXPY . 11

3 The Operator Relative Entropy Cone and Semidefinite programming 14

v

Contents vi

3.1 Introduction . 14

3.2 Univariate spectral functions . 15

3.3 Extensions to Bivariate matrix functions via Perspectives 16

3.4 The OREC . 16

4 An Approximate Canonicalization for the Operator Relative Entropy Cone 18

4.1 An integral representation of the scalar logarithm 18

4.2 Gauss-Legendre Quadrature . 19

4.3 Improving the approximation via exponentiation 20

4.3.1 Error bounds for rm,k . 21

4.3.2 Generalization to matrix functions . 21

4.4 A semidefinite representation for the OREC . 22

5 Implementing the OREC within CVXPY 25

5.1 The sREC . 26

5.1.1 Implementing the Gauss-Legendre quadrature 26

5.1.2 Vectorizing quad over lin(·, ·) . 27

5.2 The OREC . 28

5.2.1 Testing the implementation . 30

6 Implementing important Atoms using the OREC 31

6.1 Implementing the VNE . 31

6.1.1 The exact canonicalization . 32

6.1.2 An OREC description of the VNE . 32

6.2 Implementing the QRE . 32

7 Quantum Information problems in CVXPY 35

7.1 Capacity of a Classical to quantum channel . 35

7.2 Entanglement-assisted classical capacity . 36

7.3 Quantum capacity of degradable channels . 37

7.4 Relative Entropy of entanglement . 38

Bibliography 41

List of Figures

1.1 Linear program, single decision variable with it’s CVXPY demo 2

1.2 Convex optimization problem with an auxiliary, slack variable 3

1.3 Nearest Correlation matrix in the sense of the quantum relative entropy 5

2.1 save dual value appropriately packs in the computed dual values into W, z

while dual cone implements the PowConeND’s dual cone 12

2.2 Computing PowConeND’s duals from the dual values of it’s constituent PowCone3D
constraints . 13

5.1 Gauss-Legendre quadrature, python implementation 27

5.2 Code for constraining (x, y, z) ∈ rSOC . 28

5.3 Canonicalization routine for the OREC . 29

6.1 CVXPY implementation of the exact representation of the VNE 33

6.2 OREC based canonicalization method for the quantum rel entr 34

7.1 Capacity of a cq-channel . 36

7.2 quantum cond entr in CVXPY . 37

7.3 Entanglement-assisted classical capacity of a quantum channel 38

7.4 Quantum capacity of degradable channels . 39

7.5 Relative entropy of entanglement . 40

vii

Abbreviations/Notations

DSL Domain Specific Language

DCP Disciplined Convex Programming

QRE Quantum Relative Entropy

KKT Karush-Kuhn-Tucker

OREC Operator Relative Entropy Cone

sREC scalar Relative Entropy Cone

NCP Non-Commutative Perspective

WMGM Weighted Matrix Geometric Mean

rSOC rotated Second Order Cone

VNE Von-Neumann Entropy

[p] for integer p {1, 2, . . . , p}

viii

Dedicated to the Indomitable Human Spirit...

ix

Chapter 1

A Generic introduction to Convex &

Conic Optimization

This chapter introduces some basic notions that will be useful for understanding the work done

throughout the entire thesis. Much of this is classical content and borrows heavily from [4, 3, 5,

13] and [14].

1.1 Whetting the appetite, basic

1.1.1 What is mathematical optimization?

Mathematical optimization deals with constrained programs taking on the following generic

form:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1 . . . ,m

hi(x) = 0, i = 1, . . . , p

Where, x ∈ Rn

and includes the following general areas [4]:

1. Modelling : Techniques for writing out applied problems in the above general format

2. Optimization Theory : Characterizing the nature of the optima of various subclasses of the

above problem

1

Chapter 1. Convex & Conic Optimization 2

3. Optimization Methods: Development and analysis of algorithms for solving the above

programs

4. Software: Development of higher-level and easy-to-use software for posing and solving

various kinds of optimization problems

In the above, f0 is the objective-function that we are trying to minimize (or maximize, depending

on the particular formulation), the fi are the so-called inequality-functions of the problem (since

they are used to describe the sets that the optimal solution ought to lie in via an inequality)

and the hi are the functions used to describe equality constraints in the problem.

A point is said to be feasible if it satisfies each of the constraints in the problem i.e.:

Definition 1. The point x for an optimization problem is feasible if:

x ∈ D

fi(x) ≤ 0 ∀i ∈ [m]

hi(x) = 0 ∀i ∈ [p]

1.1.2 Optimization software

Much of our work in this thesis is dedicated to extending the CVXPY, [8], modeling platform with

functionality for being able to model quantum information problems.

CVXPY is a domain-specific-language that provides a convenient algebra (via it’s various functions

and constraint sets implemented as Atoms and Constraint classes) for expressing optimization

problems within python itself. CVX, [15] and JuMP, [9], serve similar roles within Matlab and

Julia. As an example, note the following linear program and its CVXPY implementation.

minimize 5x1 + x2 + 2x3

subject to 3x1 + x2 + 0.5x3 ≥ 6

3x1 + 2x2 + 4x3 ≥ 15

2x1 + x3 ≥ 5

x1 + 4x2 ≥ 7

x1, x2, x3 ≥ 0

import numpy as np

import cvxpy as cp

x = cp.Variable(3)

obj = cp.Minimize(5 * x[0] + x[1] + 2 * x[2])

cons = [

3 * x[0] + x[1] + 0.5 * x[2] >= 6,

3 * x[0] + 2 * x[1] + 4 * x[2] >= 15,

2 * x[0] + x[2] >= 5,

x[0] + 4 * x[1] >= 7,

x >= 0

]

prob = cp.Problem(obj, cons)

prob.solve()

Figure 1.1: Linear program, single decision variable with it’s CVXPY demo

Chapter 1. Convex & Conic Optimization 3

This role is distinct from optimization solvers such as MOSEK, GUROBI, CLARABEL (among others),

which are ’lower-level ’ software programs (compared to their DSL counterparts). In essence,

DSL’s like CVXPY, CVX and JuMP take in the specification of an optimization problem in the

symbolic form shown above, ensure that the problem has been constructed in accordance with

Disciplined Convex Programming (DCP), [16], rules, and then convert this algebraic description

of the problem into a representation that these lower-level solvers can accept and work with —

the output of which is then passed back through the chain and the user’s symbolic description is

then populated with different values of the solution. We will briefly get a chance to work with

the lower-level part of this pipeline in Chapter 2.

We end this section by implementing a stylistic problem in CVXPY which has helper -variables

that don’t directly contribute to the construction of the objective function. In this particular

construction, the auxiliary variable z that has been introduced into the equality constraint can

be thought of as representing the slack between the value of the constraint function on the LHS

and the RHS of the inequality AT the optimal value of the problem.

minimize 3x1 + 2x2

subject to x1 + x2 ≥ 5

2x1 − 3x2 + z = 1

log

2∑
i=1

exi ≤ 10

x1 + 4x2 ≥ 7

z ≥ 0

import numpy as np

import cvxpy as cp

x = cp.Variable(2)

z = cp.Variable()

obj = cp.Minimize(3 * x[0] + 2 * x[1])

cons = [

x[0] + x[1] >= 5,

2 * x[0] - 3 * x[1] + z == 1,

cp.log_sum_exp(x) <= 10,

z >= 0

]

prob = cp.Problem(obj, cons)

prob.solve()

Figure 1.2: Convex optimization problem with an auxiliary, slack variable

1.2 Some fundamental theory, intermediate

1.2.1 Basic definitions

In this section, we do a whirlwind overview of some definitions that are fundamental to much of

the discussion ahead [13].

Definition 2. A set D is a convex set if it completely contains the line segment between any two

points in the set D
∀x, y ∈ D, 0 ≤ t ≤ 1 ⇒ tx+ (1− t)y ∈ D

Chapter 1. Convex & Conic Optimization 4

Definition 3. A function f(·) with domain D is convex if:

f (αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

Definition 4. An alternate characterization of convexity for a function is by studying its epigraph,

which is a set that can be associated with every function f . The epigraph of a function f : Rn → R
is the set:

epi(f) := {(x, t)|x ∈ dom(f), f(x) ≤ t}

The above definition implies that minimizing over the epigraph is equivalent to minimizing f(x).

Furthermore, a function f is convex if and only if its epigraph is convex.

minimize t

subject to f(x) ≤ t

With the above in place, we can give the following definition for a convex-optimization problem:

Definition 5. A convex optimization problem is of the form:

minimize f(x)

subject to fi(x) ≤ 0, i ∈ [m]

Ax = b

Where the functions f(·) and fi(·)∀i are all convex functions and the equality constraints are

affine functions. This ensures that the feasible set of the problem is a convex set.

Now, note that the two problems that were implemented in the previous section are both convex

optimization programs! To see this, note that the objective functions of both of the problems

are linear in their respective optimization variables, which combined with the convexity of linear

functions, means that the objectives of both problems are indeed convex.

Similarly, all of the constraint functions, fi of the first program, are linear in nature and, hence,

also lead to a convex feasible region.

For the second problem, the objective and constraints [1, 2, 4, 5] are linear and hence again,

convex. The third constraint makes use of the log sum exp atom, which means we have a convex

function as a constraint function, with an appropriately directed inequality. Hence, since each of

the constraints are individually convex, the final feasible region for the problem which is the

intersection of each of them is also convex, making the problem convex as a whole!

Chapter 1. Convex & Conic Optimization 5

Definition 6. The cone of positive definite matrices can be characterized in these the following

two equivalent ways.

Sn
++ =

{
X ∈ Sn|zTXz > 0,∀z ∈ Rn

}
= {X ∈ Sn|λi(X) > 0, i ∈ [n]}

PD-ness is symbolically depicted as X ≻ 0 similarly, PSD-ness by X ⪰ 0

1.2.2 A toy problem using the QRE

We shall delve into a more thorough survey of the kinds of problems that can be implemented

using the QRE (one of the major contributions to come out of this work) in Chapter 7. Here, we

provide a stylized example of the computation of the nearest correlation matrix in the sense of

the QRE.

A correlation matrix is a symmetric positive definite matrix with a unit diagonal. The nearest

correlation matrix problem attempts to approximate a given symmetric matrix A with a matrix

X that is constrained to be a correlation matrix (see [2] for more information), . This is typically

done in the sense of the Frobenius norm, but here for demonstration purposes, we do it with the

QRE.

minimize ||A−X||QRE
subject to diag(X) = e

X ⪰ 0

import cvxpy as cp

import numpy as np

n = 4

np.random.seed(0)

A = np.random.randn(n, n)

A = M @ M.T

X = cp.Variable(shape=(n, n), symmetric=True)

obj = cp.Minimize(cp.quantum_rel_entr(M, X))

cons = [

cp.diag(X) == np.ones((n,)),

X >> 0

]

prob = cp.Problem(obj, cons)

prob.solve()

Figure 1.3: Nearest Correlation matrix in the sense of the quantum relative entropy

1.3 On Conic Optimization, Advanced

1.3.1 Convex cones and the Conic reformulation

In this section we briefly introduce the conic formulation of convex optimization. Much of the

content here follows the excellent review, [14]

Chapter 1. Convex & Conic Optimization 6

Definition 7. A convex cone is a set that is both:

1. Closed under scalar multiplication, i.e. x ∈ C ⇒ λx ∈ C∀λ ∈ R+

2. Closed under addition, i.e. x, y ∈ C ⇒ x+ y ∈ C

Definition 8. A cone C is pointed if and only if C ∩ −C = {0}, where −C stands for the set

{x| − x ∈ C}

Definition 9. A cone C is solid if and only if int C is nonempty

With the above in mind, we can write the conic optimization problem as:

Definition 10. Let C ⊆ Rn be a pointed, solid closed convex cone. The primal conic optimization

problem as:

inf
x∈Rn

cTx s.t. Ax = b and x ∈ C

Where x ∈ Rn is the column vector that is being optimized and the problem data is given by

cone C, a m× n matrix A and two column vectors b ∈ Rm and c ∈ Rn.

The conic optimization problem can hence be viewed as minimizing a linear function over the

intersection of a convex cone and an affine subspace.

For example, the linear optimization problem can be formulated by choosing the cone C to be

the positive orthant Rn
+, leading to the below standard formulation:

inf
x∈Rn

cTx s.t. Ax = b and x ≥ 0

The major difference between the above-defined conic problem and the standard convex problem

lies in the special choice of the feasible set S = C ∩ L, where L is the affine subspace defined

by L{x ∈ Rn|Ax = b}. Since C and L are convex, then C ∩ L is also convex ensuring the primal

conic optimization problem is also a convex optimization problem.

Most importantly, though, is the result that the above formulation of the convex optimization

problem in terms of convex cones is just as general as its traditional convex counterpart!

The principal advantage of the conic formulation of a convex program, however, lies in the

very symmetrical formulation of its corresponding dual problem, which is discussed in the next

section.

1.3.2 Conic duality

Each primal convex optimization problem admits a corresponding, strongly related dual problem

that may be computed using the theory of Lagrange duality. However, dual problems computed

this way are far from symmetric w.r.t the structure of the primal.

Chapter 1. Convex & Conic Optimization 7

The Lagrangian dual of the conic problem stated above, however, can be expressed in a very

symmetric form with its original primal, in conic form by exploiting the notion of a dual cone.

Definition 11. The dual of a cone C ⊆ Rn is defined by

C∗ =
{
x∗ ∈ Rn|xTx∗ ≥ 0∀x ∈ C

}
Furthermore, we have the following key results

Theorem 1. If C is a closed convex cone, its dual C∗ is another closed convex cone. The dual

(C∗)∗ of C∗ is equal to C

Theorem 2. If C is a solid, pointed, closed convex cone, its dual C∗ is another solid, pointed,

closed convex cone and (C∗)∗ = C

We are now ready to state the dual conic problem

Definition 12. The Lagrangian dual of the primal conic problem is defined by:

sup
y∈Rm,s∈Rn

bT y s.t. AT y + s = c and s ∈ C∗

Where y ∈ Rm and s ∈ Rn are the column vectors that are being optimized over.

Clearly, the above dual problem has an identical structure to the primal conic problem, in that

it also involves the optimization of a linear function over the intersection of a convex cone and

an affine subspace.

One of the major advantages of having access to a dual problem (for a convex optimization

problem) that is readily analyzable is the convenience of being able to verify the KKT conditions,

which are optimality conditions for convex-constrained programming.

1.3.3 Optimality for Conic Problems

Before proceeding any further, we first require the notions of Strong and Weak duality (note

that p∗, d∗ are the optimal values of the primal and dual problems respectively)

Weak duality states that the optimium value of the dual is always a lower-bound on the optimal

value of the primal, i.e. d∗ ≤ p∗. Since weak duality always holds, if solving the dual for a given

problem is easier than the primal, then it can be used to obtain nontrivial lower bounds for the

same.

Chapter 1. Convex & Conic Optimization 8

Strong duality states, d∗ = p∗. This does not hold in general. Conditions that guarantee that

strong duality hold, are called constraint qualifications, the most significant of which are due to

Slater.

Slater’s condition relates to the existence of Lagrange multipliers for a convex program and

guarantees the strong duality. For conic programs, it can simply be stated as

∃x ∈ int(C) s.t. Ax = b

Theorem 3 (KKT conditions for conic problems). The conic problem:

p∗ = inf
x∈Rn

cTx s.t. Ax = b and x ∈ C

admits the dual bound p∗ ≥ d∗, where

d∗ = sup
y∈Rm,s∈Rn

bT y s.t. AT y + s = c and s ∈ C∗

If both problems are strictly feasible, then the duality gap is zero: p∗ = d∗ and both value are

attained. Then a pair (x, y) is primal-dual optimal if and only if the KKT conditions are satisfied,

i.e.

1. Primal feasibility: x ∈ C, Ax = b

2. Dual feasibility: c−AT y ∈ C∗

3. Complementary slackness: (c−AT y)Tx = 0

The reason the stationarity condition is not seen in the above statement is because L(x, λ, y) =
cTx + yT (b − Ax) − λTx, and ∇xL(x, λ, y) = 0 ⇒ (c − AT y − λ) = 0, and λ can be easily

eliminated from the resultant set of equations.

Chapter 2

Dual variables for the n-dimensional

power cone in CVXPY

2.1 What is the Power Cone?

Definition 13. The general n-dimensional power cone with a ”long left-hand side” may be defined

as follows, [2]:

Pα1,...,αm
n =

x ∈ Rn : Πm
i=1x

αi
i ≥

√√√√ n∑
i=m+1

x2i , x1, . . . , xm ≥ 0

Where,

∑
i αi = 1 (i.e. the αi’s are elements of the n -dimensional simplex)

However, CVXPY defines the power cone slightly differently (it is this definition that we work

with for the remnant of our discussion):

Definition 14.

Pα1,...,αn
n =

{
x ∈ Rn : Πn−1

i=1 x
αi
i ≥ |xn|

}
i.e. we impose m = n − 1. The above will be referred to as PowConeND (typeset as such)

henceforth.

2.2 The dual of the Power Cone

Lemma 1. The dual cone to PowConeND is[2]:

(Pα1,...,αm)∗n =

{
y ∈ Rn :

(
y1
α1

, . . . ,
yn−1

αn−1
, yn

)
∈ Pα1,...,αm

}
9

Chapter 2. PowConeND 10

Where (y1, . . . , yn) are the corresponding dual variables.

2.3 A simpler representation of the N-dimensional power cone

Canonicalization is the process of describing a set (in our cases, convex sets) in terms of other,

more ’fundamental’ sets — in the case of CVXPY, as mentioned prior, these ’fundamental’ sets

will be the convex cones which the solvers that CVXPY has an existing solver interface with,

support.

It is this process that allows a user’s specification of a higher-level program written in CVXPY

by leveraging its various supported Atom and Constraint classes can communicate with the

output of the lower-level solvers that CVXPY calls.

For our convex cone of interest, namely PowConeND, this canonicalization is particularly intuitive,

and we can, in-fact, represent a singular PowConeND constraint as the intersection of multiple

3-dimensional power cones (henceforth referred to as PowCone3D). This is achieved by recursively

splitting PowConeND down into PowCone3D constraints like so, [1]:

xα1
1 tγ11 ≥ |xn| where, γ1 = α2 + . . .+ αn−1

. . .

x

αi

Πi−1
j=1

γj

i tγii ≥ ti−1 where, γi =

∑n−1
j=i+1 αj

Πi−1
i=1γj

∀i = 2, . . . , n− 3

. . .

x

αm−1

Πn−3
j=1

γj

m−1 x

αm

Πn−3
j=1

γj

m ≥ tn−3

Essentially, every N -dimensional PowConeND constraint can be represented by (N−2) PowCone3D

constraints.

2.4 Dual variables corresponding to this representation

The dual variables for each of these PowCone3D subcones can be given as follows, [1]:(
y1
α1

)(
R1

γ1

)
≥ |yn|

Chapter 2. PowConeND 11

. . .(
yi ×Πi−1

i=1γj
αi

) αi

Πi−1
j=1

γj
(
Ri

γi

)
≥ Ri−1 ∀i = 2, . . . , n− 3

. . .yn−2 ×Πn−3
j=1 γj

αn−2

αn−2

Πn−3
j=1

γj

(ym ×Πn−3
j=1 γj

αn−1

) αm

Πn−3
j=1

γj

≥ Rn−3

where the y ’s are the duals to the x ’s in the original problem and R ’s are the duals to the

auxiliary variables t.

2.5 Implementing all of the above within CVXPY

Implementing the above recipe within CVXPY was an interesting exercise in hacking the libraries’

(undocumented) internals. Before my PR for adding dual variable support for PowConeND, CVXPY

supported dual variable recovery for every supported fundamental cone — the convex cones for

which this feature had not been implemented were the ones that required the implementation of

an explicit canonicalization procedure at the level of CVXPY’s internals (before the problem’s

representation got passed down to lower-level solvers) — there’s three such cones in CVXPY,

PowConeND, RelEntrConeQuad and OpRelEntrConeQuad.

As of today, there does not exist a closed form expression for the dual variables of the latter two

cones (an expression for the sREC, which is the cone that the RelEntrConeQuad is approximating,

may be readily derived by exploiting its trivial relation to the exponential cone — this is explored

in Chapter5).

Whereas, the dual cone for the full Operator Relative Entropy Cone is an open problem (for

both the exact OREC and also OpRelEntrConeQuad)

We spent a considerable amount of time studying the exact way dual variables are passed

around while CVXPY constructs the SolvingChain for solving a user-defined problem. After

much investigation, we honed in on the invert::Canonicalization methods as the exact place

for implementing the above-defined math for recovering the dual variables for a PowConeND

constraint from it’s constituent PowCone3D constraints.

In the case of PowConeND constraint, it has a dedicated canonicalization class, Exotic2Common

subclasses Canonicalization, namely, we overrode the invert::Exotic2Common method,

where we implemented the above math for choosing the correct dual variables for the PowConeND

constraint corresponding to the generated (N − 2) PowCone3D constraints.

Chapter 2. PowConeND 12

class PowConeND(Cone):

... omitted code ...

def save_dual_value(self, value) -> None:

dW = value[:, :-1]

dz = value[:, -1]

if self.axis == 0:

dW = dW.T

dz = dz.T

if dW.shape[1] == 1:

dW = np.squeeze(dW)

self.dual_variables[0].save_value(dW)

self.dual_variables[1].save_value(dz)

def _dual_cone(self, *args):

"""Implements the dual cone of PowConeND See Pg 85

of the MOSEK modelling cookbook for more information"""

if args is None or args == ():

scaled_duals = self.dual_variables[0]/self.alpha

return PowConeND(scaled_duals, self.dual_variables[1],

self.alpha, axis=self.axis)

else:

return PowConeND(args[0]/self.alpha, args[1], self.alpha, axis=self.axis)

Figure 2.1: save dual value appropriately packs in the computed dual values into W, z while
dual cone implements the PowConeND’s dual cone

After this, another major change that was needed was overriding the save dual value::PowConeND

method — which is a method where the dual values that have been recovered inside of invert

are actually stored onto the dual value attribute on a Constraint object. Here, we needed to

ensure that the recovered dual values were packed appropriately into the dual variables. The

CVXPY API for the n-dimensional power cone is: PowConeND(W, z, alpha, axis) — note

that this API allows for users to construct vectorized PowConeND constraints by passing in a

matrix W and a vector z (with the axis argument dictating how these objects should be spliced).

We also implemented the dual cone::PowConeND method (newly introduced as part of my

Google Summer of Code 2023 project) which houses a CVXPY implementation of the dual cone

of the corresponding Cone::Constrtaint class.

With all of this in place, it turned out to be exceedingly simple to test this implementation since

we could simply utilize the user-level KKT infrastructure that we had built during the summer

i.e. we tested the KKT conditions against sample (feasible) problems involving PowConeND.

The core of the logic for the dual variable implementation, as described above, has been

implemented inside of the invert::Exotic2Common and save dual value::PowConeNDmethods.

They are reproduced in this chapter for completion’s sake.

Chapter 2. PowConeND 13

class Exotic2Common(Canonicalization):

"""

other methods and fields

""" ""

def invert(self, solution, inverse_data):

pvars = {vid: solution.primal_vars[vid] for vid in inverse_data.id_map

if vid in solution.primal_vars}

dvars = {orig_id: solution.dual_vars[vid]

for orig_id, vid in inverse_data.cons_id_map.items()

if vid in solution.dual_vars}

if dvars == {}:

#NOTE: pre-maturely trigger return of the method in case the problem

is infeasible (otherwise will run into some opaque errors)

return Solution(solution.status, solution.opt_val, pvars, dvars,

solution.attr)

dv = {}

for cons_id, cons in inverse_data.id2cons.items():

if isinstance(cons, PowConeND):

div_size = int(dvars[cons_id].shape[1] // cons.args[1].shape[0])

dv[cons_id] = []

for i in range(cons.args[1].shape[0]):

Iterating over the vectorized constraints

dv[cons_id].append([])

tmp_duals = dvars[cons_id][:, i * div_size: (i + 1) * div_size]

for j, col_dvars in enumerate(tmp_duals.T):

if j == len(tmp_duals.T) - 1:

dv[cons_id][-1] += [col_dvars[0], col_dvars[1]]

else:

dv[cons_id][-1].append(col_dvars[0])

dual value corresponding to `z`

dv[cons_id][-1].append(tmp_duals.T[0][-1])

dvars[cons_id] = np.array(dv[cons_id])

return Solution(solution.status, solution.opt_val, pvars, dvars,

solution.attr)

Figure 2.2: Computing PowConeND’s duals from the dual values of it’s constituent PowCone3D
constraints

Chapter 3

The Operator Relative Entropy Cone

and Semidefinite programming

3.1 Introduction

The Operator Relative Entropy Cone (henceforth referred to as the OREC) is a convex cone that

features prominently in the modeling of several problems in quantum information.

In this chapter, we want to set the general theoretical backdrop so that the semidefinite

approximation of the OREC, [11] given in the next chapter becomes a bit easier to digest. We will

give some general theoretical background for the matrix logarithm, how it is used to generate

the OREC, and give a brief overview of the rich field of semidefinite programming, which will be

used to approximate the OREC.

Semidefinite programming problems are convex optimization problems that take on the following

form, [22]:

min
X∈Sn

tr(C,X)

subject to tr(Ai, X) = bi ∀i ∈ [m]

X ⪰ 0

With it’s dual being, [22]:

max
y∈Rm

bT y

subject to C = S +
∑
i∈[m]

Aiyi

S ⪰ 0

14

Chapter 3. The Operator Relative Entropy Cone 15

Specifically, we are interested in semidefinite representations (of ’size’ d) of epigraphs convex

functions f , i.e. cases when {(x, t) : f(x) ≤ t} can be expressed in the form of π
(
L ∩Hd

+

)
where π is a linear mapping and Hd

+ is the set of all positive semidefinite, hermitian matrices.

Understanding which convex sets and functions admit small semidefinite descriptions has been a

significant area of research in recent history.

The caveat however, in relying on semidefinite descriptions, is that the feasible regions of

semidefinite optimization problems are necessarily semialgebraic sets i.e. they can be expressed

as a finite union of sets generated by polynomial inequalities. Which means that non-semialgebraic

convex sets such as those generated by the logarithm (and it’s matrix function generalizations)

cannot be exactly modeled via the use of semidefinite programs.

The paper, [11], studies the problem of understanding which general convex sets and functions

could be approximated with high accuracy with small semidefinite representations — that is to

say, put explicitly, for some convex function f with a non-semialgebraic epigraph, how well can

one construct a function that is not just convex, but also has a semidefinite representation of

given size.

3.2 Univariate spectral functions

The route taken in [11] is to start from univariate functions and then generalize the same to the

computation of matrix functions. If g : R++ → R then it’s corresponding matrix function can be

defined for the set of positive definite Hermitian matrices Hn
++ by.

g(X) = U diag(g(λ1), . . . , g(λn))U
∗

Where, X = U diag(λ1, . . . , λn)U
∗ is an eigendecomposition of X.

Note that the matrix logarithm can be very naturally cast into the above template of spectral

functions:

X = U diag(λ1, . . . , λn)U
∗

logm(X) = U diag(log(λ1), . . . , log(λn))U
∗

In addition to this, we also need a natural definition of convexity/concavity for spectral functions;

this comes up as follows:

Chapter 3. The Operator Relative Entropy Cone 16

Definition 15. A function g : R++ → R is operator concave if the corresponding matrix function

satisfies Jensen’s inequality in the positive semidefinite order, i.e., to say:

g(λX1 + (1− λ)X2) ⪰ λg(X1) + (1− λ)g(X2) ∀n and X1, X2 ∈ Hn
++

With the above in mind, we can now define the matrix hypograph of g as:{
(X,T) ∈ Hn

++ ×Hn : g(X) ⪰ T
}

The logarithm is an operator concave function, and its operator concavity can be used to

establish the joint convexity of the quantum relative entropy function, which features prominently

in Chapter-6 and Chapter-7 (where we implement several applied problems from quantum

information theory using this suite of Atoms and Cones that we have built)

3.3 Extensions to Bivariate matrix functions via Perspectives

Since we are primarily interested in bivariate functions of the like of the (Umegaki) quantum

relative entropy, [11] then goes on to introduce a noncommutative notion of the perspective of a

function.

Given a scalar-valued function g : R++ → R it’s perspective transform is defined as (x, y) ∈
R2
++ → yg(x/y).

The concavity of g also implies the concavity of its perspective transform. This notion can be

extended to spectral functions (which are functions of hermitian PSD matrices).

Definition 16. The Non-Commutative perspective function corresponding to the function g :

R++ → R, where its translation to PSD, hermitian inputs is made by computing its corresponding

spectral function, is a matrix function Pg : Hn
++ ×Hn

++ → Hn:

Pg(X,Y) = Y 1/2g
(
Y −1/2XY −1/2

)
Y 1/2

The NCP is jointly concave in (X,Y) whenever g is operator concave, which is to say:

Pg(λX1 + (1− λ)X2, λY1 + (1− λ)Y2) ⪰ λPg(X1, Y1) + (1− λ)Pg(X2, Y2) ∀λ ∈ [0, 1]

3.4 The OREC

All of the above mathematical machinery involving spectral functions of scalar-valued functions,

followed by operator concavity thereof, their matrix hypographs, and finally capped off via the

Chapter 3. The Operator Relative Entropy Cone 17

introduction of the NCP to generalize the constructed matrix function to bivariate inputs leads

us very elegantly towards the OREC as is captured in the definition below:

Definition 17. The OREC is the convex cone constructed from the matrix hypograph of the NCP

of the matrix logarithm, which is computed via its spectral function form generated from the

scalar logarithm, i.e., the OREC is the cone generated from the matrix hypograph of the operator

relative entropy function, denoted by Dop:

Dop(X||Y) := −X1/2 log(X−1/2Y X−1/2)X1/2

The major throughline of [11] is that the approximations of the scalar logarithm function can be

used to approximate the above, Dop, which in turn can be used to get semidefinite approximations

of the all-important quantum relative entropy.

We discuss the actual nature of the quadrature-based approximations in Chapter-4

Chapter 4

An Approximate Canonicalization for

the Operator Relative Entropy Cone

In Chapter3 we discussed the general background for how the OREC can be defined using all of

these very tightly coupled pieces, each of which are essential in being able to write out a small

semidefinite description.

In the following chapter, we wish to explain systematically, the methodology for arriving at the

semidefinite description of the OREC is built upto in the paper, [11]

4.1 An integral representation of the scalar logarithm

The starting point for constructing these approximations is the observation that the (scalar)

logarithm may be expressed as a definite integrand as follows:

log(x) =

∫ 1

0

x− 1

t(x− 1) + 1
dt

We expect an integral representation of some generic concave function g, of the following form:

g(x) =

∫
t
ft(x)dν(t)

Where ν is a positive measure and for any fixed t, ft(x) is a concave (rational) function of x

that admits a semidefinite representation.

These kinds of integral representations are guaranteed to exist for certain kinds of operator

concave functions (which the logarithm is, as was discussed in Chapter3), the following theorem

formalizes this notion, [11].

18

Chapter 4. Canonicalization, OREC 19

Theorem 4 ([11], Theorem-4). If g : R++ → R is a non-constant operator monotone function

then there is a unique probability measure µ supported on [0, 1], such that:

g(x) = g(1) + g′(1)

∫ 1

0
ft(x)dµ(t)

Where, ft is the rational function mentioned in the above generic definition, which in the case of

the logarithm happens to be: ft(x) =
x−1

t(x−1)+1

The above integrand representation can be naturally approximated via a quadrature rule with

positive weights, which in turn gives us a generic way to approximate the concave function g:

g(x) ≈
m∑
j=1

wjftj (x)

In [11], the Gaussian-Legendre quadrature rule is used to estimate the weights (discussed in the

next section)

Now, to cap this section off, we state the semidefinite representation of the epigraph of x → ft(x):

ft(x) ≥ τ ⇔

[
x− 1− τ −

√
tτ

−
√
tτ 1− tτ

]
⪰ 0

With the above in mind, we now define a function, rm which will be our constructed quadrature

approximation of the scalar logarithm, defined as:

rm(x) :=

m∑
j=1

wjftj (x) =
m∑
j=1

wj
x− 1

tj(x− 1) + 1

Here, tj ∈ [0, 1] are the quadrature nodes and wj > 0 are the quadrature weights — m controls

the number of nodes in the quadrature approximation (and will be an important parameter in

our eventual implementation of the full OREC as well)

The key property of rm is that it is concave and semidefinite-representable because of it being a

nonnegative combination of functions that are each semidefinite representable, [11].

4.2 Gauss-Legendre Quadrature

A quadrature algorithm will output out a set of nodes and weights (corresponding to each node)

over which the function will simply be evaluated and then summed over (with each evaluation

being scaled by the appropriate weight). The Gauss-Legendre quadrature in specific, admits a

Chapter 4. Canonicalization, OREC 20

very rich and interesting formulation in terms of the Legendre polynomials, namely, the nodes

of the G-L quadrature are nothing but the roots of the Legendre polynomials! Now comes the

question of how does one generate these roots of the polynomials — as it turns out, there is

a very special passage that exists, starting all the way from the Arnoldi iteration which gets

specialised to the Lanczos Algorithm (by restricting the input matrix A to be symmetric) whose

adaption to the continuous regime (i.e. functions ↔ vectors and operators ↔ matrices) yields

us the required nodes, [20] is a great resource for reading more about the above.

Namely, we obtain the following recurrence (whose elements are to be subsequently used to

construct the Jacobi matrix defined below), [20]:

αn = 0, βn =
1

2
(1− (2n)−2)−1/2.

Which in turn, leads us to the following definition.

Definition 18. The Jacobi matrix can be constructed from the above set of recurrence coefficients

{αn} and {βn} as:

Tn =

α1 β1 0 · · · 0

β1 α2 β2 0 · · · 0

0 β2 α3
. . . · · · 0

0 0
. . .

. . .
. . . βn−1

0 0 0 · · · βn−1 αn

With this, we have the following theorem, [20]:

Theorem 5 ([20], Theorem 37.4). With Tn being the n× n Jacobi matrix, let Tn = V DV T be

an orthogonal diagonalization of V with V = [v1|v2| · · · |vn] and D = diag(λ1, · · · , λn). Then the

nodes of the Gauss-Legendre quadrature formula are given by:

xj = λj , wj = 2(vj)
2
1, j = 1, · · · , n

4.3 Improving the approximation via exponentiation

The logarithm satisfies the following standard functional equation:

log(x1/2) =
1

2
log(x)

This means, that we can represent log(x) in terms of the logarithm of
√
x — this is signifi-

cant because the square-root operation brings points closer to x = 1 where the quadrature

approximations are more accurate.

Chapter 4. Canonicalization, OREC 21

This additional exponentiation step also fits well with our existing mathematical machinery

because the square root operation is: operator monotone, operator concave and semidefinite

representable.

With this in mind, we now tweak the definition of our constructed approximate function rm as

follows:

rm,k(x) = 2krm(x1/2
k
)

The approximation rm,k is to be understood as a composition of two steps:

1. Take the 2kth-root of x and bring it closer to 1

2. Apply the approximation rm and scale back by 2k accordingly.

4.3.1 Error bounds for rm,k

One can derive error bounds between rm,k and log. The correct way to study which, is by

inspecting the Chebyshev coefficients of t → ft(x) since rm is defined in terms of Gaussian

quadrature applied to a rational function ft(x)

Proposition 1 ([11], Proposition-1). For any x > 0 we have:

|rm,k(x)− log(x)| ≤ 2k
∣∣∣√κ−

√
κ−1

∣∣∣2(√
κ− 1√
κ+ 1

)2m−1

≍ 4.4−m(k+2) log(x)2m+1 (k → ∞)

By making appropriate choices of (m, k) in the above, we can obtain a result that tells us how

the size of the semidefinite representation grows as the quality of the approximation improves

Theorem 6 ([11], Theorem-1). For any (fixed) a > 1 and any ϵ > 0, there exists a function

r such that |r(x)− log(x)| ≤ ϵ ∀x ∈ [1/a, a] and r has a semidefinite representation of size

O
(√

log(1/ϵ)
)
.

4.3.2 Generalization to matrix functions

All of the above machinery holds just as well for matrix functions as well, this is made possible

because:

ft, the rational function in terms of which we express the quadrature approximation, rm is

operator concave and the matrix hypograph generated by its spectral function equivalent admits

a small semidefinite description

An important result to note here is the semidefinite representation of Pft , where P (·) is the NCP

of a univariate matrix function defined in Chapter3, we reproduce it below for completion’s sake:

Chapter 4. Canonicalization, OREC 22

Proposition 2 ([11], Proposition-8). If t ∈ [0, 1] then the perspective Pft of ft is jointly matrix

concave since:

Pft(X,Y) ⪰ T and X,Y ≻ 0 ⇔

[
X − Y 0

0 Y

]
−

[
T

√
tT

√
tT tT

]
⪰ 0 and X,Y ≻ 0

Proposition 3 ([11], Proposition-2). For t ∈ [0, 1], let ft =
x−1

t(x−1)+1 . Then (the spectral function

equivalent of) ft is operator concave. Its matrix hypograph admits the following semidefinite

description:

ft(X) ⪰ T and X ≻ 0 ⇔

[
X − I 0

0 I

]
−

[
T

√
tT

√
tT tT

]
⪰ 0 and X ≻ 0

From the above result, one can deduce the following:

Proposition 4 ([11], Proposition-3). The (spectral function equivalent of) rm,k is operator

concave

With this, we are ready to present the full semidefinite representation of the OREC

4.4 A semidefinite representation for the OREC

The OREC is the epigraph associated with the operator relative entropy matrix function (which is

the NCP of the negative logarithm).

Dop(X||Y) := −X1/2 log(X−1/2Y X−1/2)X1/2

Kn
re = cl

{
(X,Y, T) ∈ Hn

++ ×Hn
++ ×Hn : T ⪰ Dop(X||Y)

}
Hence, the key to approximating the OREC is to approximate the Dop — which, according to

the discussion so far, can very naturally be done by taking the NCP of −rm,k, i.e. to say our

approximation of the OREC is:

Kn
m,k =

{
(X,Y, T) ∈ Hn

+ ×Hn
+ ×Hn : T ⪰ −Prm,k

}
Where P is the NCP of a univariate matrix function

Chapter 4. Canonicalization, OREC 23

The main theorem of [11], which gives the semidefinite representation of rm,k is reproduced in

full below. Before this, we need to define the notion of a weighted matrix geometric mean.

Definition 19. For any 0 < h < 1 the h-weighted geometric mean of A,B ≻ 0 is denoted A#hB

and defined by:

A#hB := A1/2
(
A−1/2BA−1/2

)h
A1/2

Note that A#hB is the NCP of the power function x → xh. All of the usual properties defined

so far in this work also hold for the WMGM (operator concavity in (A,B) and semidefinite

representability)

Theorem 7 ([11], Theorem-3). A triple of matrices (X,Y, T) belongs to Kn
m,k if and only if

Z0 = Y,

[
Zi Zi+1

Zi+1 X

]
⪰ 0 (i = 0, . . . , k − 1)

m∑
j=1

wjTj = −2−kT,

[
Zk −X − Tj −√

tjTj

−√
tjTj X − tjTj

]
⪰ 0 (j = 1, . . .m)

holds for some T1, . . . , Tm, Z0, . . . , Zk ∈ Hn.

We sketch the larger structure of the proof of this very impressive result below.

Proof. We are interested in being able to represent Prm,k
in a form where we can easily derive

its semidefinite description, this is helped by making the following observation:

Prm,k
(Y,X) = 2kPrm((X#2−kY), X)

The above-stated semidefinite representation follows from the following three facts:

1. Semidefinite representation of the WMGM : For any X,Y ≻ 0 and V ∈ Hn and k ≥ 1 we

have X#2−kY ⪰ V if an only if there exists Z0, . . . , Zk ∈ Hn that satisfy:

Z0 = Y,Zk = V and

[
Zi Zi+1

Zi+1 X

]
⪰ 0 (i = 0, . . . k − 1)

This representation is restricted to the case of having h = 1/2k. This construction hinges

on the fact that X#2−kY can be expressed in terms of k nested geometric means as

X#1/2(X#1/2(. . . (X#1/2Y)))

Chapter 4. Canonicalization, OREC 24

2. Semidefinite representation of Prm : For any V,X ≻ 0 and T ∈ Hn we have Prm(V,X) ⪰ T

if and only if there exists T1, . . . , Tm that satisfy:

m∑
j=1

wjTj = T and

[
V −X − Tj −√

tjTj

−√
tjTj X − tjTj

]
⪰ 0 (j = 1 . . . ,m)

The above representation follows from the semidefinite representation of Pft (stated above)

and
∑m

j=1wjftj

3. Prm is monotone in its first argument. This is also easily established from the monotonicity

of rm

Combining the above three facts into the WMGM expression for the Prm,k
yields the stated

semidefinite representation in the theorem.

Chapter 5

Implementing the OREC within

CVXPY

This chapter details the implementation of the two constraint classes that were added to CVXPY

as a part of this undertaking, namely, RelEntrConeQuad and OpRelEntrConeQuad. In terms of

Chapter-4’s terminology, these are K1
m, k and Kn

m, k respectively.

The reason we decided to start from the scalar relative entropy was two-fold: (1) As an initial

exercise towards familiarizing ourselves with the structure of the semidefinite descriptions in a far

simpler environment (only real inputs are allowed), (2) Be able to trivially check the correctness

of our implementation because of the equivalence of the sREC and the exponential cone (which

made a brief appearance back in Chapter-1). Additionally, both of the approximations share the

Gauss-Legendre quadrature implementation.

Note that both of these are Constraint classes (they are also members of the Cone::Constraint

class), which is CVXPY’s abstraction for a constraint in an optimization problem.

One of the principal difficulties in implementing this entire quantum information suite within

CVXPY was that of testing. Compared to the abundance of literature and example problems

available on classical cones like the exponential cone, the second-order cone, etc., there is a

marked lack of the same for the OREC. While we opted to leverage the correctness of the original

CVXQUAD (Matlab) implementation for verifying the correctness of solutions later on in the

development of these tools, we had to rely on crafting clever problems involving our to-be-tested

objects whose correctness could otherwise be verified when we had just begun.

25

Chapter 5. OREC in CVXPY 26

5.1 The sREC

The sREC, or, K1
re is just a particular instantiation of the OREC which was discussed in Chapter-3:

Kre := cl {(x, y, τ) ∈ R++ × R++ × R : x log(x/y) ≤ τ}

Which we are approximating via Km,k (only the scalar variant of every function makes an

appearance in all of these quantities):

Km,k :=
{
(x, y, τ) ∈ R2

++ × R : xrm,k(x/y) ≤ τ
}

The relationship between the sREC and the exponential cone is very easy to observe from

their definitions, namely, we only require a permutation and a sign change of the arguments

to transform to the other. Specifically: If (x1, x2, x3) ∈ Kexp =⇒ (x2, x3,−x1) ∈ Kre. This

permutation has been implemented in the as expconequad(m, k) method under the ExpCone

class and is the method that provides the primary interface for working with this quadrature

approximation variant of the exponential cone. One can refer to [12] for an interesting study of

the sREC and the exponential cone in the context of the root-finding problem.

Now, an interesting observation that can be made in the case of the sREC is the fact that

2 × 2 SDP constraints can be very easily reformulated as SOCs, specifically, in terms of a

rotated-second-order-cone because:[
x y

y z

]
⪰ 0 ⇔ x ≥ 0, z ≥ 0, xz ≥ y2

The last of which is a rotated SOC constraint. To this end, there exists the quad over lin(X,

y) atom in CVXPY which computes the quantity
∑

i

X2
ij

y whose epigraph i.e. quad over lin(X,

y) ≤ t is the required quantity. The issue however being that the atom has not been vectorized

properly for vector inputs y.

We explore how we get around this in one of the sections next — before that, we make a

brief detour and discuss the implementation of the Gauss-Legendre quadrature, the relevant

theoretical background for which was provided in Chapter-4.

5.1.1 Implementing the Gauss-Legendre quadrature

As you may recall from Chapter-4, the Gauss-Legendre quadrature requires the construction

Jacobi matrix, from whose eigendecomposition we construct the nodes and weights of the

quadrature algorithm.

Chapter 5. OREC in CVXPY 27

The construction of the Jacobi Matrix requires the computation of the betas and their appropriate

arrangement as part of a matrix.

All of this structure can be very elegantly captured within vanilla numpy as shown below, [19]:

def gauss_legendre(n):

"""

Helper function for returning the weights and nodes for an

n-point Gauss-Legendre quadrature on [0, 1]

"""

beta = 0.5/np.sqrt(np.ones(n-1)-(2*np.arange(1, n, dtype=float))**(-2))

T = np.diag(beta, 1) + np.diag(beta, -1)

D, V = np.linalg.eigh(T)

x = D

x, i = np.sort(x), np.argsort(x)

w = 2 * (np.array([V[0][k] for k in i]))**2

x = (x + 1)/2

w = w/2

return w, x

Figure 5.1: Gauss-Legendre quadrature, python implementation

5.1.2 Vectorizing quad over lin(·, ·)

Vectorizing the input over y turned out to be somewhat of an involved process. We opted to

move away from using quad over lin out of the box, and chose to write our own function for

constraining a set of variables to the rotated SOC since CVXPY’s SOC::Cone::Constraint

class implements a vanilla SOC constraint.

The implementation for the same hinges on the following two key ideas:

1. If (y, t, 2x) ∈ rSOC ⇔ (y + t, y − t, 2x) ∈ SOC

2. The way the SOC constraint is vectorized in CVXPy is as: Assumes t is a vector the same

length as X’s columns (rows) for axis == 0 (1).

Chapter 5. OREC in CVXPY 28

def rotated_quad_cone(X: cp.Expression, y: cp.Expression, z: cp.Expression):

"""

For each i, enforce a constraint that

(X[i, :], y[i], z[i])

belongs to the rotated quadratic cone

{ (x, y, z) : || x ||^2 <= y z, 0 <= (y, z) }

This implementation doesn't enforce (x, y) >= 0!

That should be imposed by the calling function.

"""

m = y.size

assert z.size == m

assert X.shape[0] == m

if len(X.shape) < 2:

X = cp.reshape(X, (m, 1))

#####################################

quad_over_lin := sum_{i} x^2_{i} / y

t = Variable(1,) is the epigraph variable.

Becomes a constraint

SOC(t=y + t, X=[y - t, 2*x])

####################################

soc_X_col0 = cp.reshape(y - z, (m, 1))

soc_X = cp.hstack((soc_X_col0, 2*X))

soc_t = y + z

con = cp.SOC(t=soc_t, X=soc_X, axis=1)

return con

Figure 5.2: Code for constraining (x, y, z) ∈ rSOC

5.2 The OREC

Recall the definitions of the operator relative entropy and it’s epigraph, the OREC from sec4.4.

Dop(X||Y) := −X1/2 log(X−1/2Y X−1/2)X1/2

Kn
re = cl

{
(X,Y, T) ∈ Hn

++ ×Hn
++ ×Hn : T ⪰ Dop(X||Y)

}
The implementation of the canonicalization method for the OREC was tedious from a book-keeping

perspective, but ultimately because of CVXPY’s elegant abstractions, more-or-less follows one-

to-one from the semidefinite description of the Kn
m,k provided in Chapter-4, especially with the

gauss legendre routine in place.

The additional step that had to be done with OpRelEntrConeQuad’s implementation was to tell

CVXPY what happens when the inputs to the cone are hermitian in nature (and not just real

and symmetric).

For some background, CVXPY has an abstraction of Reduction classes which reduce various

aspects of a problem down into a more fundamental representation (one that lower level solvers,

Chapter 5. OREC in CVXPY 29

like CLARABEL or MOSEK can accept). The Reduction class that tells CVXPY what to do when

the inputs to a particular function or a constraint are complex in nature, is the appropriately

named Complex2Real::Reduction class.

So, to make sure CVXPY knew what to do when OpRelEntrConeQuad received complex, hermitian

input, we had to implement a separate canonicalization method that converted the complex,

hermitian inputs received by the OpRelEntrConeQuad constructor, to real, symmetric inputs

that could be processed by the actual canonicalization routine. This is done by expanding every

argument (say A) as A → B =

[
Re(A) − Im(A)

Im(A) Re(A)

]
. The core implementation of OREC’s

canonicalization method is reproduced below:

def OpRelEntrConeQuad_canon(con: OpRelEntrConeQuad, args)

-> Tuple[Constraint, List[Constraint]]:

k, m = con.k, con.m

X, Y = con.X, con.Y

assert X.is_real()

assert Y.is_real()

assert con.Z.is_real()

Zs = {i: Variable(shape=X.shape, symmetric=True) for i in range(k+1)}

Ts = {i: Variable(shape=X.shape, symmetric=True) for i in range(m+1)}

constrs = [Zero(Zs[0] - Y)]

if not X.is_symmetric():

ut = upper_tri(X)

lt = upper_tri(X.T)

constrs.append(ut == lt)

if not Y.is_symmetric():

ut = upper_tri(Y)

lt = upper_tri(Y.T)

constrs.append(ut == lt)

if not con.Z.is_symmetric():

ut = upper_tri(con.Z)

lt = upper_tri(con.Z.T)

constrs.append(ut == lt)

w, t = gauss_legendre(m)

lead_con = Zero(cp.sum([w[i] * Ts[i] for i in range(m)]) + con.Z/2**k)

for i in range(k):

[Z[i] , Z[i+1]]

[Z[i+1], x]

constrs.append(cp.bmat([[Zs[i], Zs[i+1]], [Zs[i+1].T, X]]) >> 0)

for i in range(m):

off_diag = -(t[i]**0.5) * Ts[i]

The following matrix needs to be PSD.

[Z[k] - x - T[i] , off_diag]

[off_diag , x - t[i]*T[i]]

constrs.append(cp.bmat([[Zs[k] - X - Ts[i], off_diag],

[off_diag.T, X-t[i]*Ts[i]]]) >> 0)

return lead_con, constrs

Figure 5.3: Canonicalization routine for the OREC

Chapter 5. OREC in CVXPY 30

5.2.1 Testing the implementation

As I alluded to earlier, one of the principal challenges in the implementation of the OREC was

being able to write verifiable tests for the same. For the same, we resorted to the clever

construction of programs whose correctness could otherwise be verified (i.e. a reference solution

could pre-maturely be computed either directly, or via a reformulation in terms of existing

CVXPY functionality).

We construct such verifiable tests based off of a clever choice of the nature of the objective

function with the only constraint in the problem being a OpRelEntrConeQuad constraint (with

some feasibility constraints placed on the eigenvalues of (A,B)). Namely, we make the following

observation:

Lemma 2. If (A,B, T) ∈ Kn
re, i.e. we have T ⪰ Dop(A,B). We have T = Dop(A,B) for any

objective that is an increasing function of the eigenvalues.

Proof. This follows naturally from the characterization of the PSD cone in terms of every

constituent matrix having positive eigenvalues, namely:

Sn
++ = {X ∈ Sn|λi(X) ≥ 0, i ∈ [n]}

If the sole significant constraint in our problem is: T ⪰ Dop, we have (T − Dop) ⪰ 0 =⇒
λi(T −Dop) ≥ 0. Assuming the objective is to minimize tr(T) which is the sum of all of the

eigenvalues of T , it is clear that such a problem has a trivial solution at T = Dop.

Also note that we can compute the objective easily in such a case. Say we have the tr(.) as the

objective function, then we can write: tr(T) = tr(T −Dop) + tr(Dop), where tr(T −Dop) ≥ 0

because T ⪰ Dop, and since at optimality we have T = Dop, we have tr(T) = tr(Dop)

With the above structure in mind, we decided to construct two different kinds of test cases based

on the way we computed Dop:

1. (A,B) commute. In this case, (A,B) are constructed to share eigenvectors but have

different eigenvalues to ensure that they commute during the computation of the Dop

(recall that the Dop is the NCP of the matrix logarithm). In such a case, the Dop admits a

particularly simple form, namely: Dop(A,B) = U diag(a log(a/b))U−1 (where a, b are the

set of eigenvalues of (A,B) respectively)

2. (A,B) do NOT commute. In this case, (A,B) are constructed independently. The T = Dop

condition still holds, but in this case, instead of being able to compute the reference

solutions in place, we leverage the CVXQUAD (matlab) implementation for the same.

Chapter 6

Implementing important Atoms using

the OREC

In this chapter, we discuss arguably what the entirety of this project led up to, and that is the

implementation of the all-important Von-Neumann Entropy (von neumann entr) and Quantum

Relative Entropy (quantum rel entr) as CVXPY Atoms i.e. as functions which can be used as

part of constructing the objective when writing out optimization problems in CVXPY.

Definition 20. The Von-Neumann Entropy of a quantum state ρ is defined as, [18]:

S(ρ) := − tr(ρ log(ρ))

Definition 21. The Quantum Relative entropy of two quantum states, ρ, σ is defined as, [18]:

D(ρ||σ) := tr[ρ(log ρ− log σ)]

6.1 Implementing the VNE

The VNE can be implemented routinely with access to a working OpRelEntrConeQuad implemen-

tation, but as it so happens, the VNE also admits an exact canonicalization which is described in

the paper [6].

As of today, the API for von neumann entr has been designed to ensure users can very natu-

rally use either of the two possible canonicalization pathways. We default to using the exact

pathway and use the approximate if the user passed in the (m, k) tuple when instantiating

von neumann entr::Atom.

31

Chapter 6. Canonicalization, QRE, VNE, CVXPY 32

6.1.1 The exact canonicalization

We reproduce Proposition-4 from [6] here:

Theorem 8 ([6], Proposition-4). Let f : Rn → R be a convex function that is invariant under per-

mutation of its argument, and let g : Sn → R be the convex function defined as g(N) = f(λ(N)).

Here λ(N) refers to the list of eigenvalues of the matrix N . Then we have that:

g(N) ≤ t

⇕

∃x ∈ Rns.t.

f(x) ≤ t

x1 ≥ · · · ≥ xn

sr(N) ≥ x1 + · · ·+ xr, r = 1, . . . , n− 1

Tr(N) = x1 + · · ·+ xn

where, sr(N) is the sum of the r largest eigenvalues of N

6.1.2 An OREC description of the VNE

The epigraph of von neumann entr can be expressed in terms of the OREC, the basis for which is

the observation that:

S = tr(Dop(X||I)) (6.1)

From the above representation, a very natural representation of the von neumann entr in terms

of OpRelConeQuad follows, i.e.:

(N,T) ∈ {(X,Q) : Q ⪰ S} ⇐⇒ (N, I, T) ∈ Kn
re

6.2 Implementing the QRE

The QRE is perhaps the most important Atom that can be implemented for applications in

quantum information theory when one has a working OREC implementation.

The following proposition shows how the epigraph of the QRE can be expressed in terms of the

OREC, [11]:

Chapter 6. Canonicalization, QRE, VNE, CVXPY 33

def von_neumann_entr_canon(expr, args):

N = args[0]

assert N.is_real()

n = N.shape[0]

x = Variable(shape=(n,))

t = Variable()

START code that applies to all spectral functions

constrs = []

for r in range(1, n):

lambda_sum_largest(N, r) <= sum(x[:r])

expr_r = lambda_sum_largest(N, r)

epi, cons = lambda_sum_largest_canon(expr_r, expr_r.args)

constrs.extend(cons)

con = NonNeg(sum(x[:r]) - epi)

constrs.append(con)

trace(N) \leq sum(x)

con = trace(N) == sum(x)

constrs.append(con)

trace(N) == sum(x)

con = Zero(trace(N) - sum(x))

constrs.append(con)

x[:(n-1)] >= x[1:]

x[0] >= x[1], x[1] >= x[2], ...

con = NonNeg(x[:(n - 1)] - x[1:])

constrs.append(con)

END code that applies to all spectral functions

sum(entr(x)) >= t

hypos, entr_cons = entr_canon(x, [x])

constrs.extend(entr_cons)

con = NonNeg(sum(hypos) - t)

constrs.append(con)

return t, constrs

Figure 6.1: CVXPY implementation of the exact representation of the VNE

Chapter 6. Canonicalization, QRE, VNE, CVXPY 34

def quantum_rel_entr_canon(expr, args):

X, Y = args

n = X.shape[0]

Imat = np.eye(n)

e = Imat.ravel().reshape(n ** 2, 1)

assert X.is_symmetric()

assert Y.is_symmetric()

first_arg = cp.atoms.affine.wraps.symmetric_wrap(kron(X, Imat))

second_arg = cp.atoms.affine.wraps.symmetric_wrap(kron(Imat, Y))

epi = Variable(shape=first_arg.shape, symmetric=True)

orec_con = OpRelEntrConeQuad(first_arg, second_arg, epi,

expr.quad_approx[0], expr.quad_approx[1]

)

main_con, aux_cons = cp.reductions.cone2cone.approximations.OpRelEntrConeQuad_canon(

orec_con, None

)

constrs = [main_con] + aux_cons

return e.T @ epi @ e, constrs

Figure 6.2: OREC based canonicalization method for the quantum rel entr

Proposition 5. Let D be the relative entropy and Dop be the operator relative entropy. Then

for any A,B ≻ 0 the following identity holds:

D(A||B) = ϕ
(
Dop

(
A⊗ I||I ⊗B

))
Where ϕ is the unique linear map from Cn2×n2

to C that satisfies ϕ (X ⊗ Y) = tr
[
XY T

]
, and B

is the entrywise complex conjugate of B

The above identity relating the QRE and the operator relative entropy function allow us to express

the QRE’s epigraph in terms of the OREC as follows:

Corollary 1. For any A,B ≻ 0 and τ ∈ R we have:

D(A||B) ≤ τ ⇐⇒ ∃T ∈ Hn2
:
(
A⊗ I, I ⊗B, T

)
∈ Kn2

re and ϕ(T) ≤ τ

An important point to note with the implementation of the above is the exact nature of the ϕ

map. The linear map in ϕ is simply given by: ϕ(Z) = w∗Zw for Z ∈ Cn2×n2
, where w ∈ Cn2

is

the vector obtained by stacking the columns of the n× n identity matrix. It follows taht ϕ is a

positive linear map, in the sense that if Z ⪰ 0 then ϕ(Z) ≥ 0

Chapter 7

Quantum Information problems in

CVXPY

In this chapter, we do a brief study of some applied problems that can be modeled using this

quantum information suite in CVXPY.

Remark: The structure and prose of this chapter borrows heavily from the paper [10], with the

addition of CVXPY/python-specific implementation details.

7.1 Capacity of a Classical to quantum channel

For a finite input alphabet χ and a finite-dimensional Hilbert space A, a classical-quantum

channel is a mapping Φ : χ → D(A) which maps symbols x ∈ χ to density operators Φ(x). The

capacity of such a channel. The capacity of such a channel can be computed as the solution of

an optimization problem:

maximize
p∈Rχ

H

(∑
x∈χ

p(x)Φ(x)

)
−
∑
x∈χ

p(x)H (Φ(x))

subject to p ≥ 0,
∑
x∈χ

p(x) = 1

Where H(.) is the Von Neumann entropy.

The above problem can be implemented fairly straightforwardly in CVXPY using a mixture of

standard CVXPY functionality and the von neumann entr atom. It also requires the randRho

35

Chapter 7. Example QI problems, CVXPY 36

routine from the qubit package which generates random density matrices (which in turn relies

on the randH routine which generates random hermitian matrices)

def randH(n: int):

A = np.random.randn(n, n) + 1j * np.random.randn(n, n)

return (A + A.conj().T)/2

def randRho(n: int):

p = 10 * randH(n)

p = (p @ p.conj().T)/np.trace(p @ p.conj().T)

return p

import numpy as np

import cvxpy as cp

rho1 = randRho(2)

rho2 = randRho(2)

H1 = cp.von_neumann_entr(rho1)

H2 = cp.von_neumann_entr(rho2)

p1 = cp.Variable()

p2 = cp.Variable()

obj = cp.Maximize((cp.von_neumann_entr(p1 * rho1 + p2 * rho2)

- p1 * H1 - p2 * H2)/np.log(2))

cons = [

p1 >= 0,

p2 >= 0,

p1 + p2 == 1

]

prob = cp.Problem(obj, cons)

prob.solve(solver='MOSEK')

Figure 7.1: Capacity of a cq-channel

7.2 Entanglement-assisted classical capacity

The entanglement-assisted classical capacity of a quantum channel Φ quantifies the amount of

classical bits that can be transmitted reliable through it, if, the receiver and the transmitter are

allowed to share an arbitrary entangled state.

We require the notion of the mutual-information of the channel Φ for some input state ρ:

Chapter 7. Example QI problems, CVXPY 37

Definition 22. Let U : A → B ⊗E be a Stinespring isometry for Φ with environment E i.e. such

that Φ(X) = trE [UXU∗] for any operator X on A. Then I(ρ,Φ) is defined as:

I(ρ,Φ) := H(B|E)UρU∗ +H(B)UρU∗

Where H(B|E) denotes the conditional entropy.

Proposition 6. The mutual information, I(ρ,Φ) defined above is concave in ρ

Coming back to the computation of the entanglement-assisted classical capacity. The problem

can be shown to admit the following maximization expression:

Cea = max
ρ∈D(A)

I(ρ,Φ)

The above formula is the quantum analogue of the formula for the Shannon capacity of a classical

channel.

This can be implemented within CVXPY using a combination of traditional CVXPY func-

tionalities and most notably, the quantum cond entr, von neumann entr and partial trace

atoms.

The quantum conditional entropy admits a definition in terms of the QRE and the partial trace

operator. Its CVXPY implementation is given below:

def quantum_cond_entr(rho, dim: list[int], sys=0):

if sys == 0:

composite_arg = kron(np.eye(dim[0]),

partial_trace(rho, dim, sys))

return -quantum_rel_entr(rho, composite_arg)

elif sys == 1:

composite_arg = kron(partial_trace(rho, dim, sys),

np.eye(dim[1]))

return -quantum_rel_entr(rho, composite_arg)

Figure 7.2: quantum cond entr in CVXPY

7.3 Quantum capacity of degradable channels

There are a few definitions required to set this problem up, we reproduce them from [10].

Definition 23. If Φ is a quantum channel from A to B with environment E and an isometry

representation U : A → B ⊗E, then the complimentary channel, Φc : L(A) → L(E) is given by:

Φc(ρ) = tr
B
[UρU∗]

Chapter 7. Example QI problems, CVXPY 38

import cvxpy as cp

import numpy as np

na, nb, ne = (2, 2, 2)

AD = lambda gamma: np.array([[1, 0], [0, np.sqrt(gamma)], [0, np.sqrt(1-gamma)], [0, 0]])

U = AD(0.2)

rho = cp.Variable(shape=(na, na), hermitian=True)

obj = cp.Maximize((cp.quantum_cond_entr(U @ rho @ U.conj().T, [nb, ne]) +

cp.von_neumann_entr(cp.partial_trace(U @ rho @ U.conj().T,

[nb, ne], 1)))/np.log(2))

cons = [

rho >> 0,

cp.trace(rho) == 1

]

prob = cp.Problem(obj, cons)

prob.solve()

Figure 7.3: Entanglement-assisted classical capacity of a quantum channel

Definition 24. The coherent information of a channel Φ for the input ρ is defined as:

Ic(ρ,Φ) := H (Φ(ρ))−H (Φc(ρ))

The unassisted quantum capacity Q(Φ) of quantum channels Φ is the number of qubits that can

be reliably transmitted over Φ — it can be computed via the following expression:

Q(Φ) = lim
n→∞

max
ρ(n)

1

n
Ic(ρ

(n),Φ⊗n)

Writing this problem out in CVXPY required the implementation of the applychan method

from the [7] package (whose relevant chunk is shown below). Additionally, this required the

quantum cond entr (which depends on the QRE as discussed above).

7.4 Relative Entropy of entanglement

The relative entropy of entanglement is defined as the distance from a bipartite state on D(A⊗B),

ρ, to the set of all separable states on A⊗B (Sep):

REE(ρ) = min
τ∈Sep

D(ρ||τ)

Chapter 7. Example QI problems, CVXPY 39

def applychan(chan: np.array, rho: cp.Variable, rep: str, dim: tuple[int, int]):

tol = 1e-10

dimA, dimB, dimE = None, None, None

match rep:

case 'choi2':

dimA, dimB = dim

case 'isom':

dimA = chan.shape[1]

dimB = dim[1]

dimE = int(chan.shape[0]/dimB)

pass

match rep:

case 'choi2':

arg = chan @ kron(rho.T, np.eye(dimB))

rho_out = partial_trace(arg, [dimA, dimB], 0)

return rho_out

case 'isom':

rho_out = partial_trace(chan @ rho @ chan.conj().T, [dimB, dimE], 1)

return rho_out

na, nb, ne, nf = (2, 2, 2, 2)

AD = lambda gamma: np.array([[1, 0],[0, np.sqrt(gamma)],[0, np.sqrt(1-gamma)],[0, 0]])

gamma = 0.2

U = AD(gamma)

W = AD((1-2*gamma)/(1-gamma))

Ic = lambda rho: cp.quantum_cond_entr(

W @ applychan(U, rho, 'isom', (na, nb)) @ W.conj().T,

[ne, nf], 1

)/np.log(2)

rho = cp.Variable(shape=(na, na), hermitian=True)

obj = cp.Maximize(Ic(rho))

cons = [

rho >> 0,

cp.trace(rho) == 1

]

prob = cp.Problem(obj, cons)

prob.solve()

Figure 7.4: Quantum capacity of degradable channels

Chapter 7. Example QI problems, CVXPY 40

The set of all separable states is infamously hard to characterize, a popular relaxation for it is to

replace ρ ∈ Sep with imposing τ to have a positive partial transpose (the PPT relaxation of this

problem as it’s called)

REE(1)(ρ) = min
τ∈PPT

D(ρ||τ)

The CVXPY implementation for the same follows below:

na, nb = (2, 2)

rho = randRho(na * nb)

tau = cp.Variable(shape=(na * nb, na * nb), hermitian=True)

obj = cp.Minimize(cp.quantum_rel_entr(rho, tau, (3,3))/np.log(2))

cons = [tau >> 0, cp.trace(tau) == 1, cp.partial_transpose(tau, [na, nb], 1) >> 0]

prob = cp.Problem(obj, cons)

prob.solve()

Figure 7.5: Relative entropy of entanglement

Bibliography

[1] MOSEK ApS. Dual variables for the Power Cone with Long LHS. https://groups.

google.com/g/mosek/c/fmQFe0C4Ups?pli=1.

[2] MOSEK ApS. MOSEK Modeling Cookbook, v3.3.0. 2023.

[3] Amir Beck. First-Order Methods in Optimization. SIAM, 2017.

[4] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization. 2022.

[5] Stephen Boyd. EE364a: Convex Optimization I, Lecture Slides. https://web.stanford.

edu/class/ee364a/lectures.html. 2023.

[6] Shah P. Chandrasekaran V. “Relative entropy optimization and its applications”. In:

Mathematical Programming 161 (2017), pp. 1–32. doi: 10.1007/s10107-016-0998-2.

[7] Toby Cubitt. Quantinf package for Matlab. http://www.dr-qubit.org/Matlab_code.

html.

[8] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded modeling language

for convex optimization”. In: Journal of Machine Learning Research 17.83 (2016), pp. 1–5.

[9] Iain Dunning, Joey Huchette, and Miles Lubin. “JuMP: A Modeling Language for Mathe-

matical Optimization”. In: SIAM Review 59.2 (Jan. 2017), 295–320. issn: 1095-7200. doi:

10.1137/15m1020575. url: http://dx.doi.org/10.1137/15M1020575.

[10] Hamza Fawzi and Omar Fawzi. “Efficient optimization of the quantum relative entropy”.

In: Journal of Physics A: Mathematical and Theoretical 51.15 (2018), p. 154003. doi: 10.

1088/1751-8121/aab285. url: https://doi.org/10.1088\%2F1751-8121\%2Faab285.

[11] Hamza Fawzi, James Saunderson, and Pablo A. Parrilo. “Semidefinite Approximations of the

Matrix Logarithm”. In: Foundations of Computational Mathematics 19.2 (2018), pp. 259–

296. doi: 10.1007/s10208-018-9385-0. url: https://doi.org/10.1007\%2Fs10208-

018-9385-0.

[12] Henrik A. Friberg. “Projection onto the exponential cone: a univariate root-finding problem”.

In: Optimization Methods and Software 38.3 (2023), pp. 457–473. doi: 10.1080/10556788.

2021.2022147. eprint: https://doi.org/10.1080/10556788.2021.2022147. url:

https://doi.org/10.1080/10556788.2021.2022147.

41

https://groups.google.com/g/mosek/c/fmQFe0C4Ups?pli=1
https://groups.google.com/g/mosek/c/fmQFe0C4Ups?pli=1
https://web.stanford.edu/class/ee364a/lectures.html
https://web.stanford.edu/class/ee364a/lectures.html
https://doi.org/10.1007/s10107-016-0998-2
http://www.dr-qubit.org/Matlab_code.html
http://www.dr-qubit.org/Matlab_code.html
https://doi.org/10.1137/15m1020575
http://dx.doi.org/10.1137/15M1020575
https://doi.org/10.1088/1751-8121/aab285
https://doi.org/10.1088/1751-8121/aab285
https://doi.org/10.1088\%2F1751-8121\%2Faab285
https://doi.org/10.1007/s10208-018-9385-0
https://doi.org/10.1007\%2Fs10208-018-9385-0
https://doi.org/10.1007\%2Fs10208-018-9385-0
https://doi.org/10.1080/10556788.2021.2022147
https://doi.org/10.1080/10556788.2021.2022147
https://doi.org/10.1080/10556788.2021.2022147
https://doi.org/10.1080/10556788.2021.2022147

Bibliography 42

[13] Benyamin Ghojogh et al. KKT Conditions, First-Order and Second-Order Optimization,

and Distributed Optimization: Tutorial and Survey. 2021. arXiv: 2110.01858 [math.OC].

[14] Francois Glineur. Conic optimization: an elegant framework for convex optimization. 2001.

[15] Michael Grant and Stephen Boyd. CVX: Matlab Software for Disciplined Convex Program-

ming, version 2.1. http://cvxr.com/cvx. Mar. 2014.

[16] Michael Charles Grant. “Disciplined Convex Programming”. PhD thesis. Stanford, 2004.

[17] Mateusz T. Madzik et al. “Precision tomography of a three-qubit donor quantum processor

in silicon”. In: Nature 601.7893 (Jan. 2022), pp. 348–353. doi: 10.1038/s41586-021-

04292-7. url: https://doi.org/10.1038/s41586-021-04292-7.

[18] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum Information.

Cambridge, England: Cambridge University Press, Dec. 2010.

[19] Lloyd N. Trefethen. “Is Gauss Quadrature Better than Clenshaw–Curtis?” In: SIAM

Review 50 (2008), pp. 67–87.

[20] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. SIAM, 1997.

[21] Xiao Xue et al. “Quantum logic with spin qubits crossing the surface code threshold”.

In: Nature 601.7893 (Jan. 2022), pp. 343–347. doi: 10.1038/s41586-021-04273-w. url:

https://doi.org/10.1038/s41586-021-04273-w.

[22] Yinyu Ye. Semidefinite Programming and Universal Rigidity. Rigidity Microworkshop,

Cornell. 2010.

https://arxiv.org/abs/2110.01858
http://cvxr.com/cvx
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04273-w
https://doi.org/10.1038/s41586-021-04273-w

	Declaration of Authorship
	Certificate
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Abbreviations/Notations
	1 A Generic introduction to Convex & Conic Optimization
	1.1 Whetting the appetite, basic
	1.1.1 What is mathematical optimization?
	1.1.2 Optimization software

	1.2 Some fundamental theory, intermediate
	1.2.1 Basic definitions
	1.2.2 A toy problem using the QRE

	1.3 On Conic Optimization, Advanced
	1.3.1 Convex cones and the Conic reformulation
	1.3.2 Conic duality
	1.3.3 Optimality for Conic Problems

	2 Dual variables for the n-dimensional power cone in CVXPY
	2.1 What is the Power Cone?
	2.2 The dual of the Power Cone
	2.3 A simpler representation of the N-dimensional power cone
	2.4 Dual variables corresponding to this representation
	2.5 Implementing all of the above within CVXPY

	3 The Operator Relative Entropy Cone and Semidefinite programming
	3.1 Introduction
	3.2 Univariate spectral functions
	3.3 Extensions to Bivariate matrix functions via Perspectives
	3.4 The OREC

	4 An Approximate Canonicalization for the Operator Relative Entropy Cone
	4.1 An integral representation of the scalar logarithm
	4.2 Gauss-Legendre Quadrature
	4.3 Improving the approximation via exponentiation
	4.3.1 Error bounds for rm, k
	4.3.2 Generalization to matrix functions

	4.4 A semidefinite representation for the OREC

	5 Implementing the OREC within CVXPY
	5.1 The sREC
	5.1.1 Implementing the Gauss-Legendre quadrature
	5.1.2 Vectorizing quad_over_lin(,)

	5.2 The OREC
	5.2.1 Testing the implementation

	6 Implementing important Atoms using the OREC
	6.1 Implementing the VNE
	6.1.1 The exact canonicalization
	6.1.2 An OREC description of the VNE

	6.2 Implementing the QRE

	7 Quantum Information problems in CVXPY
	7.1 Capacity of a Classical to quantum channel
	7.2 Entanglement-assisted classical capacity
	7.3 Quantum capacity of degradable channels
	7.4 Relative Entropy of entanglement

	Bibliography

